Picone-type theorems for hyperbolic partial differential equations
نویسندگان
چکیده
منابع مشابه
The Picone Identity for a Class of Partial Differential Equations
The Picone-type identity for the half-linear second order partial differential equation n i=1 ∂ ∂xi Φ ∂u ∂xi + c(x)Φ(u) = 0, Φ(u) := |u|u, p > 1, is established and some applications of this identity are suggested.
متن کاملHyperbolic Partial Differential Equations
Evolution equations associated with irreversible physical processes like diffusion and heat conduction lead to parabolic partial differential equations. When the equation is a model for a reversible physical process like propagation of acoustic or electromagnetic waves, then the evolution equation is generally hyperbolic. The mathematical models usually begin with a conservation statement that ...
متن کاملSturm-picone Type Theorems for Second-order Nonlinear Elliptic Differential Equations
The aim of this article is to give Sturm-Picone type theorems for the pair of second order nonlinear elliptic differential equations div(p1(x)|∇u|∇u) + q1(x)f1(u) + r1(x)g1(u) = 0, div(p2(x)|∇v|∇v) + q2(x)f2(v) + r2(x)g2(v) = 0, where | · | denotes the Euclidean length and ∇ = ( ∂ ∂x1 , . . . , ∂ ∂xn )T (the superscript T denotes the transpose). Our results include some earlier results and gene...
متن کاملPICONE-TYPE IDENTITY AND COMPARISON RESULTS FOR A CLASS OF PARTIAL DIFFERENTIAL EQUATIONS OF ORDER 4m
Recently, an identity of the Picone type for the weighted p-biharmonic operator was established by the present author [5] and employed in proving comparison theorems and other qualitative results for a pair of fourth-order elliptic partial differential equations of the form ∆ ( a(x)|∆u|p−2∆u ) − c(x)|u|p−2u = 0, (1.1) and ∆ ( A(x)|∆v|p−2∆v ) − C(x)|v|p−2v = 0, (1.2) where p > 1, a,A ∈ C(Ḡ,R+), ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1982
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1982.102.385